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Abstract

Background: Wastewater treatment is an essential tool for maintaining water quality in urban environments. While the
treatment of wastewater can remove most bacterial cells, some will inevitably survive treatment to be released into natural
environments. Previous studies have investigated antibiotic resistance within wastewater treatment plants, but few studies
have explored how a river’s complete set of antibiotic resistance genes (the “resistome”) is affected by the release of treated
effluent into surface waters. Results: Here we used high-throughput, deep metagenomic sequencing to investigate the
effect of treated wastewater effluent on the resistome of an urban river and the downstream distribution of
effluent-associated antibiotic resistance genes and mobile genetic elements. Treated effluent release was found to be
associated with increased abundance and diversity of antibiotic resistance genes and mobile genetic elements. The impact
of wastewater discharge on the river’s resistome diminished with increasing distance from effluent discharge points. The
resistome at river locations that were not immediately downstream from any wastewater discharge points was dominated
by a single integron carrying genes associated with resistance to sulfonamides and quaternary ammonium compounds.
Conclusions: Our study documents variations in the resistome of an urban watershed from headwaters to a major
confluence in an urban center. Greater abundances and diversity of antibiotic resistance genes are associated with human
fecal contamination in river surface water, but the fecal contamination effect seems to be localized, with little measurable
effect in downstream waters. The diverse composition of antibiotic resistance genes throughout the watershed suggests
the influence of multiple environmental and biological factors.
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Background

The growing public health crisis caused by the emergence and
spread of antibiotic resistance is now recognized as a global
problem with a complex interplay of environmental, biological,
and clinical factors. Research on antimicrobial resistance has
historically been focused on human pathogens, with hospitals

and other clinical settings thought to be the primary source
for the dissemination and evolution of antibiotic resistance.
However, in part owing to increased reporting of community-
acquired, antibiotic-resistant infections [1,2], researchers have
started to broaden their focus to include the role of natural envi-
ronments as possible reservoirs of antimicrobial resistance and
as settings for the evolution of new resistance determinants.
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2 Effect of treated wastewater effluent on the resistome of an urban watershed

Antimicrobial resistance is widespread in nature. Resistance
determinants can be found in nearly every environment studied
to date, including deep-sea sediment [3], an isolated cave mi-
crobiome [4], and 30,000-year-old permafrost [5]. This has led to
the recognition that environmental bacterial communities can
serve as diverse reservoirs of antimicrobial resistance genes,
termed the environmental resistome. There is substantial evi-
dence indicating that, in the past, human pathogens have ac-
quired resistance traits originating in non-pathogenic bacteria
that inhabit natural environments (6). It is reasonable to assume
that this transfer of environmental resistance factors to human
pathogens is ongoing [7]. It is therefore imperative to identify
source environments where resistance genes can be selected for
and subsequently mobilized into human or animal pathogens.

Wastewater treatment plants (WWTPs) have been demon-
strated to contain a large number of antibiotic-resistant bacteria
(ARB) and antibiotic resistance genes (ARGs) associated with re-
sistance to all known classes of antibiotic [8–11]. The treatment
of wastewater typically results in substantially reduced concen-
trations of antibiotics and other pharmaceuticals, in addition to
eliminating a significant portion of the resistant bacteria present
in untreated wastewater [11]. However, despite the efficacy of
modern WWTPs in removing ARB and ARGs from wastewater,
some resistance determinants will inevitably persist. In some
cases, ARGs have been found in treated effluent at similar or
even higher rates than measured in the influent [9,12]. Antibi-
otic compounds and resistant bacteria that survive wastewater
treatment are subsequently released into receiving bodies of wa-
ter, such as lakes and rivers. Continuous discharge of these con-
taminants can lead to elevated background levels of resistance
[13–15], enhancing the likelihood of ARGs being transferred to
human commensals or pathogens in the environment.

The localization of ARGs on mobile genetic elements (MGEs),
such as transposons and plasmids, enables their movement be-
tween bacterial cells of the same or different species. Transfer
of resistance factors is likely to increase during exposure to se-
lection factors such as antibiotics and other environmental pol-
lutants [16]. The conditions in WWTPs, including the mixture
of organisms from diverse environmental origins and the avail-
ability of surfaces and biofilms, can create strong selection pres-
sures for resistance [8,17]. Even those treatments that are effec-
tive in removing bacteria from the water can promote the ex-
change, selection, and dispersal of genes involved in antibiotic
resistance [18,19].

Recently, metagenome sequencing of wastewater effluent
has been implemented as a useful tool for monitoring the spread
of ARGs into natural environments (e.g., [20,21]). Few stud-
ies, however, have investigated the environmental resistome
throughout a single urban watershed from its headwaters to a
major drainage. In this study, we sequenced metagenomes from
72 river samples collected from an urbanized watershed with
the goal of assessing the impact of point sources of human waste
on the resistance profile of receiving river surface waters, focus-
ing especially on ARGs associated with MGEs.

Data Description

Surface water samples were collected for DNA sequencing and
measurements of stream chemistry and physical parameters
from 24 sites along 3 of the rivers comprising the Blue River wa-
tershed: the Blue River and tributaries Indian Creek and Toma-
hawk Creek. The Blue River watershed was selected on the ba-
sis of its high population density, long history of waste overflow

from a combined sewage system, and the presence of multiple,
high-capacity WWTPs. Sampling site locations were selected on
the basis of several factors, including proximity to headwaters
and confluences, as well as potential sources of pollution such
as wastewater treatment plants, hospitals, and drug manufac-
turing plants.

The surface water samples were analyzed by shotgun
metagenomic sequencing, which generated a total of 8.6 billion
read pairs. Additional samples were also collected for Escherichia
coli enumeration and antibiotic susceptibility testing.

Analyses
Detection of ARGs and MGEs in river metagenomes

ARGs were detected in river water metagenome assemblies us-
ing AMRFinder v1.04 [22]. A total of 88 unique ARGs were de-
tected in the watershed, in principle conferring resistance to
12 different classes of antibiotic and an additional 4 multidrug
resistance phenotypes: MLSb, ML, MSb, and LSa. Sulfonamide
resistance (26%), followed by aminoglycoside, β-lactam, and
macrolide resistance (24%, 16%, and 14%, respectively), made
up the largest percentage of the watershed resistome (Supple-
mentary Table S1). The most abundant and commonly occurring
ARG was sul1, which was detected in 22 of the 24 sampling sites
(Table 1). With the exceptions of sul1 and blaIND, the majority
of the highest abundance genes (those composing >1% of the
total watershed resistome) were found exclusively downstream
from potential point sources of human pollution (Supplemen-
tary Fig. S1). A wide range of MGEs were also detected in river wa-
ter metagenome assemblies. A number of these elements were
located in close proximity to ≥1 or more resistance genes, and
we verified many examples of ARGs encoded within complete
integrons or transposable elements.

ARGs are more abundant and more diverse
downstream from WWTPs

The total abundance of ARGs was found to be significantly
higher in river waters sampled immediately downstream from
WWTP discharge (Fig. 1; 1-way analysis of variance [ANOVA], P-
adjusted = 0.00051 and P-adjusted = 0.0006728, respectively). On
average, a 140-fold increase in ARG abundance was observed in
samples collected from within 5 km downstream of a WWTP. A
30-fold increase in ARG diversity was also observed in samples
collected from downstream surface waters. Of the 88 different
ARGs detected in the watershed, 77 of them were detected at
downstream sites (averaging 20 per site), while only 15 were de-
tected at upstream sites (averaging 3 per site). ARGs associated
with WWTP discharge included those associated with resistance
to lincosamide, macrolide, chloramphenicol, fluoroquinolone,
polypeptide, trimethoprim, tetracycline, and rifamycin antibi-
otics as well as with the multidrug-resistant phenotypes MLSb,
ML, MSb, and LSa.

ARGs associated with resistance to β-lactam, aminoglyco-
side, and sulfonamide antibiotics, in contrast, were common to
both upstream and downstream sites. A single sulfonamide re-
sistance gene (sul1) was present in 22 of 24 sampling sites and
comprised 87% of total abundance of all sulfonamide resistance
genes. β-lactamases were also detected with high frequency
throughout the watershed, including in 78% of the upstream
samples and 75% of the downstream samples. There was no sig-
nificant difference between upstream and downstream samples
in the abundance of sulfonamide resistance genes (false discov-
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Thornton et al. 3

Table 1. Top 25 resistance genes detected in the watershed

Resistance gene Class
Mean abundance

per rpoB gene
Percent watershed

resistome
Sample prevalence
(Site prevalence) )

sul1 Sulfonamide 4.48E−03 23.65 68 (22)
ant(3”)-II Aminoglycoside 2.33E−03 12.33 12 (4)
aadA Aminoglycoside 1.00E−03 5.28 30 (10)
msr MSb 9.12E−04 4.82 24 (8)
mph(E) Macrolide 8.02E−04 4.24 24 (8)
blaIND β-Lactam 6.07E−04 3.20 24 (8)
cfxA β-lactam 5.32E−04 2.81 17 (6)
sul2 Sulfonamide 4.51E−04 2.38 38 (13)
mph(G) Macrolide 4.27E−04 2.25 18 (6)
aph(6)-I Aminoglycoside 4.13E−04 2.18 20 (7)
mef(A) Macrolide 4.00E−04 2.11 21 (7)
blaOXA-2 β-Lactam 3.55E−04 1.88 24 (8)
blaA β-Lactam 3.51E−04 1.86 26 (9)
tet(C) Tetracycline 3.42E−04 1.81 24 (8)
tet(Q) Tetracycline 3.39E−04 1.79 21 (7)
tet(M-W-O-S) Tetracycline 3.09E−04 1.63 18 (6)
erm(F) MLS 3.03E−04 1.60 18 (6)
aph(3”)-Ib Aminoglycoside 2.93E−04 1.55 18 (6)
aadA1 Aminoglycoside 2.80E−04 1.48 15 (5)
mef(C) Macrolide 2.71E−04 1.43 24 (8)
blaOXA-10 β-Lactam 2.58E−04 1.36 24 (8)
tet(A-B-C-D) Tetracycline 2.10E−04 1.11 15 (5)
mef(B) Macrolide 1.74E−04 0.92 18 (6)
blaOXA β-Lactam 1.65E−04 0.87 18 (6)
blaVEB β-Lactam 1.63E−04 0.86 8 (3)

Figure 1 Total abundance of ARGs and MGEs in relation to proximity to WWTP.
Normalized abundances of total ARGs (top) and MGEs (bottom) were square root–

transformed for analysis. Samples are grouped on the basis of where they were
collected relative to the nearest WWTP (upstream = surface waters with no
impact from a WWTP; downstream = within 5 km downstream of the nearest
WWTP), and all data points are shown, with the whiskers representing the max-

ima and minima. The solid black line is the median value, and the area between
the lower and upper hinge represents the inter-quartile range, or difference be-
tween the first and third quartiles.

ery rate [FDR] = 0.647) or β-lactam resistance genes (FDR = 0.52).
Aminoglycoside resistance genes, exclusively encoding agent-
modifying enzymes, were detected in 64% of downstream sam-
ples and 22% of upstream samples, with a 12-fold enrichment
in abundance downstream from WWTP discharge sites (FDR <

1.014E−06).

Proximity to WWTPs was an important factor influencing the
abundance of ARGs in river surface waters. Total ARG abundance
decreased substantially at sites located >5 km downstream from
WWTPs compared with sites within 5 km (Supplementary Fig.
S2; ANOVA, P-adjusted = 0.00058). The log fold-change in ARG
diversity was inversely correlated with the downstream distance
from WWTP discharge points (Supplementary Fig. S3; linear re-
gression, adjusted R2 = 0.7425, P = 0.0008314). Notably, MGE
abundance, while not found to be significantly higher immedi-
ately downstream from WWTPs than upstream, also decreased
with distance from the WWTPs (Supplementary Fig. S4; ANOVA,
P-adjusted = 0.0007689).

ARG abundance is correlated with a marker of human
fecal pollution

The relationship between total ARG abundance and the abun-
dance of crAssphage was investigated to test whether increased
abundances of ARGs could be explained by human fecal pollu-
tion. crAssphage is a highly abundant bacteriophage in human
fecal metagenomes [23] and is rare in feces from non-human
animals [24]. The abundances of ARGs and crAssphage were
highly correlated with each other in river samples downstream
from WWTPs (Fig. 2; linear regression, adjusted R2 = 0.54, P =
5.196E−09). The highest levels of crAssphage were observed im-
mediately downstream from WWTPs, with lower levels detected
at more distant sites, following the general trend observed with
total ARG abundance.

No correlation was found between crAssphage and ARG
abundances in samples collected from sites without an up-
stream WWTP (linear regression, adjusted R2 = −0.03, P = 0.73).
Nearly all of the upstream sites were located in areas with rela-
tively high population density, and crAssphage sequences were
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4 Effect of treated wastewater effluent on the resistome of an urban watershed

Figure 2 Relationship between ARG and crAssphage abundance. Normalized

abundances of total ARG and crAssphage DNA were square root–transformed for
analysis. Sites are grouped according to whether ≥1 WWTP is located upstream
of the sample site (top) or not (bottom). Smoothing curves based on linear regres-

sion (blue line) are shown along with 95% confidence intervals (shaded regions).
Note the smaller range of crAssphage abundances in samples without upstream
WWTPs.

detected in 85% of the upstream samples. Therefore, the lack
of correlation between crAssphage and ARG abundances in up-
stream sites is not due to a complete absence of human fecal
pollution but suggests the influence of additional environmen-
tal factors that were not measured in this study.

ARGs are associated with MGEs

The potential of ARGs to be transferred between cells was inves-
tigated by identifying ARGs located on MGEs such as plasmids,
transposons, and integrative and conjugative elements (ICEs).
The number of unique ARGs encoded on MGEs (mARGs) was sig-
nificantly higher at sites immediately downstream from WWTPs
(Fig. 3; randomization, P < 0.001). The number of mARGs rapidly
diminished with increasing distance downstream (randomiza-
tion, P < 0.001). On average, the number of mARGs immediately
downstream from WWTPs (mean, 19 per sample) was slightly
higher than the number of ARGs assumed to be chromosome-
encoded owing to lack of evidence to the contrary (cARG; mean,
15 per sample); however, the difference was not found to be
significant (ANOVA, P = 0.09). Individual mARGs were more of-
ten than cARGs to be found in multiple sites downstream from
WWTPs, consistent with the ability of mARGs to be shared
among multiple bacterial species.

Of the 37 mARGs detected in the watershed, a majority (84%)
could be found within 5 km downstream from a wastewater
discharge site. Only 2 mARGs (blaTEM and sul1) were observed
in sampling sites upstream from all WWTPs. The sulfonamide
resistance gene sul1 was found in 2 distinct mobile contexts
throughout the watershed (Supplementary Table S2), but in up-

Figure 3 Diversity of ARGs and ARG-encoding plasmids/ICEs in relation to WWTP.
Samples are grouped on the basis of where they were collected relative to the

nearest WWTP (upstream = samples are of surface waters with no impact from
a WWTP; <5 km downstream = samples were collected within 5 km downstream
of the nearest WWTP; >5 km downstream = samples were collected from sites
>5 km downstream of the nearest WWTP). Box plots are drawn as in Figure 1,

with the exception that several data points overlap each other. Total numbers of
samples for each group are 18 (upstream), 14 (<5 km downstream), and 18 (>5
km downstream).

stream sites, it appeared primarily in an integron that also con-
tained the quaternary ammonium compound (QAC) resistance
genes qacE and qacG (Fig. 4). This integron had closest sequence
similarity to integron In78 (100% identity over 60% of the se-
quence), previously associated with Pseudomonas aeruginosa [25].

Downstream sites hosted mobilized genes conferring re-
sistance to many classes of antibiotic, including tetracycline,
macrolide, aminoglycoside, fluoroquinolone, and lincosamide
antibiotics, as well as several likely plasmid/ICE-encoded genes
responsible for the macrolide-lincosamide-streptogramin resis-
tance phenotype (Supplementary Table S2). Unlike sul1, the
plasmid-encoded sul2 variant was found exclusively down-
stream from WWTPs and in multiple different mobile contexts,
often with a rolling-circletype transposase. On 1 such contig
with 100% identity to plasmid R485, sul2 was found together with
a likely insertion sequence common region (ISCR) transposase,
a toxin-antitoxin system, multiple conjugation proteins, and an
integrase matching those from the Tn916 family of conjugative
transposons.

Resistance phenotypes detected by antibiotic
susceptibility assays

E. coli colonies were cultivated from river water samples that
were collected simultaneously with the samples for metage-
nomics sequencing. Curiously, no assembled metagenomic se-
quences were classified as E. coli, indicating that our sequencing
and assembly approach was not sensitive enough to detect E. coli
populations of this density.

E. coli colonies were tested for their susceptibility to a vari-
ety of antibiotics, including those associated with resistant En-
terobacteriaceae pathogens identified in the 2013 CDC Antibi-
otic Resistance Threat Report (26), as well as additional antibi-
otics with clinical significance. Antibiotic-resistant E. coli were
isolated at 7 of the 24 sampling sites (Supplementary Table S3).
Ampicillin resistance was the most common phenotype (6% of
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Figure 4 Novel sul1-bearing integron and closest match In78 from P. aeruginosa. In addition to the sul1-qacE cassette, the contig associated with the novel integron
contained a full-length integron integrase and associated integrase and cassette attachment sites, 3 uncharacterized protein-coding genes, IS21-family transposition

genes istA and istB, and a second QAC resistance gene (qacG). The boxed areas of the schema show the regions of alignment between integrons.

isolates), followed by amoxicillin-clavulanate, cefazolin, and ce-
foxitin resistance (3% of isolates each). No isolates were resistant
to glycopeptide, trimethoprim, or sulfonamide antibiotics.

Colistin resistance was determined by measuring minimum
inhibitory concentrations (MIC) with broth microdilution plates.
The most frequently observed colistin MIC was 0.5 μg/mL. Three
of the 70 isolates exhibited MICs of 2 μg/mL; colistin resistance
is defined as a MIC >2 μg/mL. A single isolate exhibited a colistin
MIC of 8 μg/mL. The metagenome of the site where this isolate
was isolated (CPA) contains the colistin resistance gene mcr-5.
No other genes conferring resistance to colistin were detected
in the watershed.

Discussion

ARGs have been previously detected in the discharge of WWTPs
[9,12, 27, 28], as well as in receiving aquatic environments such
as rivers and lakes [13–15, 20, 29–31]. Here, we conducted an
extensive metagenomic study to investigate the distance decay
effect of 4 wastewater treatment plants on the resistance pro-
file of an urban watershed. River samples collected immediately
downstream from WWTPs had significantly higher environmen-
tal abundance and diversity of ARGs, and this effect diminished
in samples collected >5 km downstream. These results provide
additional support for a localized effect of WWTPs on the resis-
tome of receiving aquatic environments.

Our results also show that ARGs associated with WWTPs are
likely to be encoded on MGEs such as plasmids and transposons.
Nearly half of the unique ARGs detected downstream of the
WWTPs were encoded on an MGE, and all of these ARGs have
been previously associated with resistance to clinically relevant
drug families. For instance, the erythromycin ribosome methy-
lase (erm) genes have been identified as part of a core WWTP
resistome [32] and have consistently been found enriched in
biofilms and surface waters downstream from WWTP discharge
[13,14]. All of the erm genes detected in our study, including
erm(F) and erm(B), were located in assembled sequences iden-
tified as plasmids or ICEs.

A number of other resistance determinants were also asso-
ciated with MGEs. These included the linked aminoglycoside re-
sistance genes strA and strB, which have previously been de-
tected in WWTP effluent [20,30] and other aquatic environments
subjected to human pollutants [33]. The strA-strB genes are typ-
ically encoded on broad-host-range non-conjugative plasmids,
as well as conjugative plasmids associated with Tn3-type trans-
posons [34]. Within the Blue River watershed, strA-strB was en-

coded on a complete Tn3-like transposon with 100% identity to
transposon Tn5393d from Alcaligenes faecalis. Contigs contain-
ing the complete transposon were found at 2 sites, each down-
stream from a potential point source of ARG pollution (LDP and
UMC), while smaller contigs containing a subset of this region
were found downstream from all 4 WWTPs. The strA-strB genes
were not found in any of the upstream samples.

The spectinomycin resistance gene aadA, another member of
the core WWTP resistome described in Munck et al. [32], was also
found in samples downstream from all WWTPs and in no up-
stream samples. In our study, aadA genes frequently co-occurred
with other ARGs and with multiple MGEs. For instance, aadA,
sul1, qacEdelta, and an IS66 transposase were present on an as-
sembled contig with >99% similarity to the conjugative tetracy-
cline resistance plasmid pFBAOT6.

Plasmid-mediated quinolone resistance, conferred through
the pentapeptide repeat protein qnr(S), was also detected imme-
diately downstream from all WWTPs. The qnr(S) gene has con-
sistently been found enriched in WWTP effluent and receiving
waters [13–15].

In the 2 largest rivers investigated here, Blue River and In-
dian Creek, WWTPs contribute on average 15% of base flow [35]
and could contribute >95% under certain conditions [36]. De-
spite the significant contribution of WWTPs to both streamflow
and ARG abundance and diversity, the WWTP-associated ARGs
did not persist in surface waters >5 km downstream from ef-
fluent discharge points. This diminishing effect of elevated ARG
abundances in receiving waters with increasing distance from
WWTPs has been observed elsewhere [14,20,29]. These results,
combined with the strong correlation of total ARG abundance
with the abundance of a human gut phage, is consistent with
the interpretation that ARGs were released into surface waters
with human fecal pollution [37] and then diluted in downstream
waters [20,29].

The abundances of ARGs in sites upstream from all WWTPs,
in contrast, were independent of human fecal pollution levels.
The relatively high abundances of ARGs in these sites suggests
the influence of agricultural pollution near the headwaters, but
this hypothesis was not tested by the present study. The most
abundant ARG in upstream samples was the sul1 sulfonamide
resistance gene, which was primarily encoded on a class 1 in-
tegron along with 2 QAC resistance genes. This same mobile el-
ement was ubiquitous throughout the entire watershed, span-
ning multiple streamflows, land use types, and pollution levels,
suggesting that it may be maintained in natural microbial com-
munities owing to a variety of selection pressures.

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/9/11/giaa125/5992824 by guest on 05 February 2021



6 Effect of treated wastewater effluent on the resistome of an urban watershed

Potential Implications

Our metagenomic study of an urban watershed has shown that
(i) ARGs are widespread in natural aquatic environments, (ii)
WWTPs introduce a characteristic profile of mobilized ARGs into
receiving rivers and streams, (iii) human fecal pollution and as-
sociated ARGs can be effectively diluted by natural microbial
populations within several kilometers from discharge points,
and (iv) the dispersal of specific ARG-encoding MGEs with con-
served genomic structures can be traced throughout the water-
shed.

Characterization of the genomic context of ARGs, such as the
novel, ubiquitous integron containing 3 different antimicrobial
resistance genes, was enabled by assembly of the metagenomes,
a computationally challenging task that is not routinely per-
formed in such studies. The additional genomic information ob-
tained from metagenomic assembly comes at the cost of re-
duced sensitivity of detection of sequences that have low abun-
dances and those that are difficult to assemble. Nevertheless,
the ability to detect ARGs in new genomic contexts and trace
their dispersal among genetic elements, organisms, and envi-
ronments is a powerful tool for the surveillance of antibiotic re-
sistance in natural environments and potentially for the early
detection of emerging resistance genotypes of clinical relevance.
Future work should continue to develop and validate metage-
nomic methods for the quantitative measurement of antimicro-
bial resistance in natural environments.

Methods
Description of study sites

The Blue River watershed encompasses 450 km2 and includes
the southern half of the Kansas City metropolitan area below
the Missouri River. The majority of water in the Kansas City
metropolitan area and in many of the adjacent towns to the
south and west drains into the Blue River. The Blue River basin
is primarily urban and suburban, with a population density of
794.8 persons/km2. Six WWTPs are located in the basin, 3 of
which near-continuously discharge treated effluent directly into
the Blue River or one of its tributaries while a fourth has occa-
sional wet-weather discharges into the lower Blue River. WWTPs
provide the dominant source of streamflow, nutrients, and phar-
maceutical compounds to the middle and lower reaches of the
Blue River during base flow [35]. Twelve sites on the main stem
of the Blue River, 10 sites on the tributary Indian Creek, and 2
sites along Tomahawk Creek were investigated (Fig. 5). Accessi-
ble locations bracketing WWTP discharges (n = 4) were specif-
ically targeted to capture the effect of WWTPs on the stream.
Two sites along Tomahawk Creek, which does not contain any
WWTPs, were sampled as additional upstream background sam-
ples for 1 WWTP site, which was located downstream from both
the effluent discharge point and the confluence between Indian
Creek and Tomahawk Creek. Additional samples from sites at
various points throughout the watershed were collected as ref-
erence samples. Characteristics of the 4 WWTPs and a summary
of the sampling sites are presented in Supplementary Tables S4
and S5, respectively.

Sample collection

A portable peristaltic pump was used to collect surface water
samples by pumping water either directly from the stream/river
into their respective containers or through sequential in-line
filters. At each sampling site, the pump tubing inlet was sub-

merged several centimeters beneath the water surface and held
in place through the use of tube weights or anchors. An at-
tempt was made to sample from a location in the stream/river
where flow seemed to be greatest or most representative of to-
tal flow. Whenever possible pump tubing was positioned up-
stream to reduce unnecessary exposure to contaminants from
sampling equipment and personnel, and caution was taken
during the placement of the sampling equipment to avoid
streambed disturbance upstream of the collection site. To avoid
introducing contamination between sites the pump tubing was
rinsed between sampling locations with ultrapure water and
80% ethanol and purged prior to sample collection with site
water for ≥1 minute after placement of the tubing inlet. Phys-
ical and chemical parameters of the stream/river water, in-
cluding dissolved oxygen, specific conductance, total dissolved
solids, pH, oxidation-reduction potential, and temperature (Sup-
plementary Table S6), were measured simultaneously with sam-
ple collection using a YSI Pro Plus portable multi-parameter wa-
ter quality meter (YSI Incorporated, Yellow Springs, OH, USA),
and turbidity was measured with a Mi415 turbidity meter (Mar-
tini Instruments, Adelaide, Ausralia).

For each sample collected for metagenomic sequencing, site
water was filtered sequentially through a 5.0-μm mixed cellu-
lose filter (5 μm pore size; 47 mm diameter; MF-Millipore; Merck,
Darmstadt, Germany), followed by a 0.2-μm Sterivex cartridge
filter (0.22 μm pore size; Sterivex; Millipore), until either clogging
of the filters substantially slowed water flow or a total volume of
5 L had been filtered. This maximum volume was previously de-
termined to be a reasonable compromise between expediency
and thoroughness when sampling river water for metagenomic
sequencing, despite considerable variation in sampling site wa-
ter quality, and was found to be sufficient for this study as well.
Depending on the level of suspended particles in the site wa-
ters, the volume of water filtered varied from 240 to 5,000 mL.
Volume filtered was an important factor affecting the amount of
DNA that could be extracted from the filters and, consequently,
the quality of a metagenomic dataset. A correction for differ-
ence in volume filtered was factored into calculations of gene
abundance to account for this. Immediately after sampling, re-
maining fluid was purged from the filter assembly/cartridge and
the 5.0- and 0.2-μm filters placed into separate, sterile whirlpool
packs and frozen on dry ice before transportation to the labo-
ratory, where they were stored at −80◦C until processing. Field
replicates, in triplicate, were collected at each sampling site and
processed individually.

The 5.0-μm prefilter was implemented as a screen for filter-
ing plant debris and large eukaryotic cells to increase the cover-
age depth of genes associated with antibiotic resistance, which
are exclusive to bacteria. In addition, the 5.0-μm prefilter re-
moved large particles, biofilms, and aggregates, which can un-
predictably swamp samples of the free-living, suspended river
communities collected by the 0.2-μm filters. This smaller size
fraction was the focus of the study because it was considered
to be more representative of suspended cells that are dispersing
through the watershed rather than being retained in sediments
and debris. No sequencing was performed with the 5-μm filters;
therefore, genes encoded by large cells or cells associated with
aggregates and biofilms are likely to be under-represented in our
study.

Samples for E. coli enumeration and antibiotic susceptibil-
ity testing were collected into sterile, 100-mL clear plastic bot-
tles and then serially diluted on-site in a phosphate buffer solu-
tion. Dilutions were filtered through a 0.45-μm membrane filter
and the filters aseptically removed from their assemblies and
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Figure 5 Location of sampling sites within the Blue River watershed. Sampling sites are marked with an X. Locations of hospitals are marked with a blue H.

placed onto U.S. Environmental Protection Agency–approved
chromogenic/fluorogenic media for the detection and enumera-
tion of E. coli and total coliforms in water [38]. Inoculated plates
were inverted and set to incubate at 35◦C for 20–24 hours. Fol-
lowing incubation, colonies exhibiting phenotypes typical of
E. coli (blue-green colonies) were counted under ambient light
using manufacturer’s guidelines. Plates were then sealed with
parafilm and stored in coolers with ice for transportation to the
laboratory, where they were refrigerated for later culturing. Field
blanks were collected at roughly one-quarter of the sites (chosen
at random) and consisted of distilled water. Field blanks were
processed in the same manner as the study samples. No growth
was observed on all but 1 of the field blanks, which is suspected
of having been contaminated with unsterilized forceps owing to
the unique pattern of growth.

Antibiotic susceptibility testing

Once in-lab, 3 colonies per sample that had been identified as
E. coli on the MI medium were selected for subsequent pheno-
typic resistance testing. The chosen colonies were plated onto

blood agar and incubated at 37◦C. The purity of the cultures was
reassessed on chromogenic agar (red-pink colonies) whenever
blood agar colonies exhibited atypical morphology. Three of the
74 plates made for susceptibility testing were found through this
additional screening measure to be contaminated and removed
from testing. Following incubation for ∼24 hours, sensitivity of
the remaining isolates to 16 antibiotics, including ampicillin,
amoxicillin, cefazolin, cefepime, ceftriaxone, ceftazidime, cef-
tazidime with clavulanic acid, cefoxitin, cefotaxime, cefotaxime
with clavulanic acid, meropenem, ciprofloxacin, aztreonam,
sulfamethoxazole-trimethoprim, gentamicin, and tetracycline,
was determined through the Kirby-Bauer method with BBL
Sensi-Disc Antimicrobial Susceptibility Test Discs (BD, Franklin
Lakes, NJ, USA). Testing was performed according to CLSI proto-
cols (39) with the following modification: a BBL Prompt Inocula-
tion System (BD) was used to pick between 3 and 5 colonies from
the blood agar for standardized preparation of 0.5 McFarland tur-
bidity level bacterial inocula. This procedure has been shown
to have high correlation with conventional disk diffusion tech-
niques, which involve the suspension of colonies in saline fol-
lowed by dilution to 0.5 McFarland. Within 15 minutes of prepa-
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ration, the suspension was used to inoculate Mueller-Hinton
(MH) agar plates using standard swabbing technique. Five or 6
antibiotic disks were applied to each of 3 plates per isolate to pre-
vent overlapping zones. Inhibition zones were measured to the
nearest millimeter for each of the 16 antibiotic disks by visual
inspection of the inoculated plates following overnight incuba-
tion at 37◦C, and the zones interpreted through a Zone Diameter
Interpretive Chart to determine susceptibility category.

Resistance to colistin was determined through broth mi-
crodilution (BMD). Because the large size of the colistin molecule
prevents sufficient diffusion through agar medium, BMD is the
only procedure recommended by the European Committee on
Antimicrobial Susceptibility Testing (EUCAST) for antimicrobial
susceptibility testing of colistin [40]. Minimum inhibitory con-
centration (MIC) for colistin was measured using MIC-strip col-
istin microdilution plates according to manufacturer’s instruc-
tion (8 × 12 well plates; Merlin Diagnostics). Briefly, 50 μL of
the standardized inoculum was added to 11 mL MH broth. The
suspension was gently vortexed and a 100-μL aliquot per well
transferred to microdilution strips containing MH broth supple-
mented with a 2-fold serial dilution of antibiotic. Final concen-
trations of antibiotic ranged from 0.0625 to 64 μm/mL. Inocu-
lated plates were sealed and incubated at 37◦C. Following incu-
bation for 20–24 hours, MICs were determined through visual
inspection of the plates under ambient and supplemented light.
MIC was defined as the concentration of drug at which no growth
was visible. Isolates were retested whenever a skipped well was
observed during inspection of the BMD strips or for additional
confirmation for E. coli isolates with MIC >2 μg/mL.

Metagenomic sequencing

Extraction of DNA from cells retained on the 0.2-μm Sterivex
filters was performed according to an established laboratory
protocol [41], briefly described here. For the complete proto-
col, see “Availability of Supporting Data and Materials.” Meth-
ods for this extraction method are also openly available in
protocols.io [42]. To help mitigate any variation that might
be introduced during laboratory handling, DNA extraction was
performed on the Sterivex filters in random order, with ex-
traction order resolved beforehand. Filter cartridges were in-
jected with extraction buffer, incubated at 65◦C for 30 min-
utes, and then the fluid was extracted from the filter car-
tridge and distributed into 0.1-mm glass bead tubes, which were
shaken for 40 seconds in a MiniBeadBeater-16607 (3,450 oscil-
lations/min; BioSpec, Bartlesville, OK, USA). Bead tubes were
centrifuged, and the supernatant was purified by extraction
with phenol/chloroform/isoamyl alcohol (25:24:1) and chloro-
form/isoamyl alcohol (24:1). DNA was preciptated overnight at
−20◦C in sodium-acetate/ethanol, and the pellets were resus-
pended in low-EDTA TE. DNA was not extracted from the 5-μm
prefilters, which remain in frozen storage for potential future
analyses.

Whenever possible, 80 ng of purified DNA was used in the
construction of metagenomic libraries. Total DNA extracted
from the filters was quantified on a Qubit fluorometer (Thermo
Fisher Scientific, Waltham, MA, USA). The quality of the sam-
ple DNA was also assessed before library construction with a
Nanodrop spectrophotometer (Thermo Fisher), and further pu-
rification conducted as needed based on Nanodrop 260/230 and
260/280 ratios using magnetic bead–based cleanup following a
protocol adapted from Rohland & Reich [43]. The 260/230 curve
was particularly predictive of library preparation success for
this study, with a significant correlation found between Nan-

odrop 260/230 ratios and the final concentration of DNA in the
prepared libraries (linear regression, adjusted R2 = 0.283, P =
5.267E−11). Purified DNA was fragmented by sonication with a
Q800R sonicator (Qsonica, Newtown, CT, USA) at 4◦C, 25% ampli-
tude, with a 10-second pulse for 60 seconds. These settings were
selected to achieve a high molecular weight band on an agarose
gel around the 500–700 bp range. Magnetic beads were then used
to select molecules from the fragmented DNA with a target size
range of 500–700 bp. The size and quality of the fragments were
verified with gel electrophoresis on a random subset of samples.
Libraries were prepared from the size-selected DNA for metage-
nomic sequencing using the NEBnext Ultra DNA library prep kit
for Illumina according to manufacturer instructions. A final bead
cleanup was performed on the prepared DNA to remove excess
kit reagents that could interfere with sequencing, and stored at
−20◦C until transportation to the sequencing center. Each of the
triplicate samples per site was processed separately, resulting in
a total of 72 metagenomic libraries for sequencing.

Quality control and sequencing of the metagenomic libraries
was conducted at the University of Utah High-Throughput Ge-
nomics Core Facility. Libraries were evaluated for quality on a
Bioanalyzer DNA 1000 chip (Agilent Technologies, Santa Clara,
CA, USA), and then paired-end sequencing (2 × 125 bp) was per-
formed on an Illumina HiSeq2500 platform with HiSeq v4 chem-
istry. Libraries were multiplexed and pooled 4 per lane for a to-
tal of 19 lanes of Illumina sequencing, yielding >1 trillion bp of
data (Supplementary Table S7). Demultiplexing and conversion
of the raw sequencing base-call data were performed through
the CASAVA v1.8 pipeline.

Sequence assembly

Quality control of the sequencing reads was performed with BB-
Duk v37.10 and consisted of contaminant removal and quality-
based trimming. First, contaminants in the form of library
adapter sequence were trimmed/filtered from the reads. An
adapter was considered to be present whenever an adapter ref-
erence sequence shared a 23-mer with a read, or an 8-mer if lo-
cated at the extreme 3′ end. A Hamming distance of 2 was al-
lowed between matching k-mers. Adapter sequences were also
detected from completely overlapping read pairs. Additional
contaminants in the form of PhiX DNA were identified and re-
moved if 90% of a read’s length was covered by the PhiX174 ref-
erence genome. PhiX DNA was used as a spike-in control dur-
ing sequencing at concentrations representing ∼0.5% of reads
generated per lane of flow cell. Reads were compared to the ref-
erence genome using k-mer matching with a k-mer size of 31.
Matching 31-mers were allowed to differ by a Hamming distance
of 1.

Reads were further trimmed on the basis of quality using
the Phred algorithm in BBDuk and discarded following trim-
ming whenever the final length of a read was <52 bp. In a study
using publicly available Illumina paired-end transcriptomes, it
was found that overly stringent trimming resulted in worse as-
semblies according to the majority of metrics measured, par-
ticularly for low-coverage datasets [44]. The adverse effects of
trimming were reduced, however, as coverage was increased.
Based on these findings, a gentle trimming strategy was rec-
ommended (Phred quality score between 2 and 5) except under
specific scenarios when more aggressive trimming is warranted,
such as in the case of exceptionally high sequencing depth. We
tested the applicability of these guidelines to metagenomic as-
semblies with a mock microbial community [45]. In nearly all
cases, aggressive trimming reduced the number of mismatches
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and indels between the assembly and mapped short reads (Sup-
plementary Fig. S5), but there was an increasingly detrimental
impact on measures of assembly performance as quality score
threshold was increased, which was especially evident in the
lower coverage libraries. Therefore, a low quality threshold was
chosen for quality-based trimming (Phred quality score of 5) be-
cause the metagenomes were determined by Nonpareil v3.3.1
[46] to not be fully saturated with reads.

Records with both reads in a pair passing quality control were
co-assembled by sampling site using Megahit v1.1.1 (47) with
parameters kstart = 27, kend = 127, and kstep = 20, and tax-
onomic bins reconstructed from the resultant assemblies using
PhyloPythiaS+ [48]. The performance of the assembler on the
datasets was evaluated based on read mapping rates and statis-
tics provided by MetaQuast v4.6.1 [49]. Megahit was selected
for assembly because of its reliable performance on datasets of
highly complex microbial communities [50,51]. Megahit is also
known to recover larger portions of strain variants than other,
comparable short-read assemblers [52].

Identification and quantification of ARGs and MGEs

Contiguous sequences (or contigs) generated during assembly
with length <200 bp were discarded prior to functional annota-
tion. Putative coding DNA sequences were predicted from the
remaining contigs and then translated into protein sequences
using Prodigal v2.6.3 [53] in meta mode. Broad functional charac-
terization of the gene predictions was performed through simi-
larity searches against KEGG (release 83.2) [54] using the BLASTP
subcommand of Diamond v0.9.14 [55] with the more-sensitive
flag, a maximum expect value of e-5, and parameters unal =
0, max-target-seqs = 1, strand = both. Homologs of known an-
tibiotic resistance determinants were identified from the pre-
dicted protein sequences using AMRFinder v1.04 with default
settings [22]. ARGs detected through AMRFinder with family
type equal to “equivalog” or “subfamily” were excluded to en-
sure that only the highest-confidence results were reported (see
the AMRFinder documentation for a more thorough description
of how ARGs are detected by AMRFinder).

The program hmmsearch (HMMER v3.1b) was used to de-
tect remote homologs of MGE markers by searching a cus-
tom database of profile HMMs against the predicted protein se-
quences using manually curated gathering scores to determine
which hits to report. The database was built by supplementing a
set of custom profiles with select profiles taken from Pfam v32.0
[56]. Markers selected for inclusion in the database were chosen
for their involvement in the transposition of DNA (i.e., integrases
and transposases), and represent integrons as well as Type I
and II transposable elements. To create the custom profiles,
groups of related proteins belonging to the same marker family
were downloaded from the NCBI RefSeq database of protein se-
quences. Duplicate sequences were clustered with CD-HIT, and
very divergent (<20% identity) and very similar sequences (>80%
identity) were removed prior to initial multiple sequence align-
ment (MSA) with MAFFT [57]. Subsequent steps, including fil-
tering, final alignment, and trimming, were performed with T-
Coffee [58]. First, sequence CORE (sCORE) scores were generated,
and the distribution of scores analyzed to identify outliers. Se-
quences with poor sCORE were discarded and the 40 most infor-
mative sequences extracted. The most informative sequences
were defined as the sequences diverging the most from each
other and constituted the final set used in the construction of
the seed MSA. Residues from the seed MSA with low transi-
tive consistency score [59] were removed, and the resulting cu-

rated alignments used to construct the profile HMMs. Model-
specific cut-offs were assigned to the profiles as in Punta et al.
[60].

Coverage of the identified features was estimated by individ-
ually mapping the quality-controlled short reads to their rele-
vant assembly using Bowtie2 v2.3.2 [61] with the very-sensitive
flag and insert-size min and max parameters provided. These
parameters were estimated from the insert-size mean and stan-
dard deviation calculated with BBmap v37.10. crAssphage cov-
erage was calculated in an identical manner by mapping short
reads to the crAssphage genome (GeneBank: NC 024711.1). To
prevent artificial replicates from inflating coverage estimates,
replicates in the mapped reads were first identified and removed
using the MarkDuplicates functionality of Picard Tools v2.17.8.
After duplicate filtering, mapped read best matches were sorted
by name using Samtools v1.3 [62] and then used for estimat-
ing environmental abundance of the annotated sequences with
count features v1.3.0, part of the seq-annot open-source soft-
ware package developed for the study.

For estimating feature abundances, read counts—the num-
ber of fragments thought to have originated from a given ge-
nomic region—were first transformed to fragment proportions
(FP), a variant of transcripts per million (TPM) [63] without the
application of a scaling factor. Each fragment used in the deter-
mination of the read counts was represented by a pair of aligned
reads. The count of a feature was incremented whenever its co-
ordinates fell within the interval of an alignment, defined as the
region between 2 ends of a successfully mapped read pair, and
an alignment interval overlapping multiple features was con-
sidered as separate evidence for the presence of each feature
falling within its coordinates. Classes from the HTSeq Python
library v0.9.1 [64] were incorporated into count features for stor-
ing alignment and feature coordinates.

FP is a measure of the proportion of fragments in the un-
derlying population produced from a given genomic region. Raw
counts were replaced with nucleotide fractions by dividing read
counts by effective length of the feature. FP further varies from
TPM in that the effective length of a feature is equal to its ac-
tual length. In metagenomes, any given position of a feature is
capable of producing fragments of any length, so consideration
of fragment start position is unnecessary in the determination
of the counts per bp rate. The nucleotide fraction of each fea-
ture was divided by the sum of all counts per bp rates to give
the length-adjusted proportion of feature i out of n total features
predicted from sample k:

FPi,k = countsi,k

lengthi (bp)
÷

nk∑

i

counts j,k

length j (bp)
(1)

ARG abundances were normalized to the abundance of the
rpoB gene by dividing the FP of each ARG to the FP of rpoB in that
metagenomic library (Table 1).

Detection of mobile ARGs

An assembly reconciliation program was used to merge con-
tigs encoding 1 or more resistance genes prior to the detection
of transposable ARGs. ARG-bearing contigs from across all sites
were first combined and clustered at 100% identity. The derepli-
cated contigs were then merged using Mix v1.0 (65d) with pa-
rameters C = 100 and A = 200. Merged contigs were manually
inspected for misassembly by mapping the dereplicated contigs
onto the merged assembly with BLASTN (BLAST+ v2.7.1) [66].
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Contigs that failed to map were then appended to the merged
assembly to create the final set of unique ARG-bearing contigs.
Components of MGEs were predicted from these contigs as de-
scribed above with additional annotation in the form of repeat
units from Repseek v6.6 [67] and attC attachment sites using cm-
search (INFERNAL v1.1.2) [68] with the covariance model from
Cury et al. [69]. Transposable ARGs were defined as those en-
coded by a complete intracellular MGE, including autonomous
transposons, composite transposons, ISCRs, and integrons. To
be considered complete, an MGE was required to contain its
relevant recombination module and be bounded by appropri-
ate attachment/excision sites when applicable. For instance,
integron-encoded ARGs were required to co-occur on the same
contig as both an attC recombination site as well as an integron
integrase.

Transferable ARGs were detected by searching the identified
ARGs against a database of plasmid and ICE protein sequences
using BLASTP with a reporting threshold of >99% sequence
similarity. The database was composed of sequences from the
ACLAME v0.4 [70] and ICEberg v2.0 [71] databases and supple-
mented with additional plasmid sequences downloaded from
NCBI RefSeq. For each site, contigs were remapped to the set
of unique ARG-bearing contigs and the results, which included
ARG-encoding plasmids/ICEs as well as transposable ARGs, were
matched to the ARG abundance table for each metagenome. The
proportion of mobile ARG per metagenome was calculated as the
abundance of transferable or transposable ARGs over the total
abundance of ARGs.

Statistical analyses

All statistical analyses were performed in the R programming
language v3.5.1 with the aid of reshape2 v1.4.3 [72] and sev-
eral graphing and statistical libraries. Figures were generated
with the data visualization library ggplot2 v3.1.0 [73], using color
palettes from the dichromat package v2.0.0 [74]. Resistome per-
centages were calculated as the fraction of total normalized
abundance for a given ARG or ARG category out of the total nor-
malized abundance for all ARGs detected within the watershed
samples. ARG diversity was calculated as the number of differ-
ent ARG types detected at a site or within the watershed, where
a given ARG type represents a unique entry in the AMRFinder
database at the allele or exception level.

Linear regressions were performed with the modeling func-
tion lm (core stats package), and curves drawn using the
geom smooth layer of ggplot2 with linear model (lm) set as the
smoothing method. Normalized ARG abundance was modeled
as a linear function of the normalized abundance of crAssphage
DNA. To determine whether the relationship was dependent
on input from known sources of human waste, samples were
grouped on the basis of whether they were collected from a
site downstream from ≥1 WWTP or from a site with no up-
stream WWTP. A linear model of ARG and crAssphage abun-
dances was compared to one that included an additional in-
teraction term separating samples based on whether they were
taken from sites located downstream from WWTPs or from sites
upstream from all WWTPs. The model that included the interac-
tion term was found to better fit the data (ANOVA, P = 0.001927),
so the relationship between ARG and crAssphage abundances
within sample groups was further tested individually. Nor-
malized abundances were log-transformed prior to model
fitting.

Geographic distance served as a proxy for river distance
when assigning sites to 1 of 3 groups representing varying

distances from WWTPs. Normalized coverage totals were log-
transformed for between-group comparisons, and differences
in total abundance assessed with ANOVA followed by the Tukey
post hoc test for pairwise comparisons of group means. When
abundance data were further divided by location of the resis-
tance gene (chromosomal vs mobilized), the log-transformed
data failed to meet test assumptions of normally distributed
data with equal variance; in this case, significance was instead
assessed through a non-parametric randomization procedure
involving randomly reassigned sample labels. P-values were cal-
culated by comparing observed F values with distributions gen-
erated from 10,000 permutations of the data. The level of sta-
tistical significance was set at 0.001 for all statistical tests per-
formed.

Only samples collected from sites located upstream and
within 5 km downstream from a WWTP were considered in
the analysis of differential abundance (n = 18 and n = 15 per
group, respectively). The change in abundance of ARG totals at
downstream WWTP sites was calculated as the log2 of the ra-
tio between downstream and upstream abundance, and statis-
tical significance of differences in abundance between groups
assessed using edgeR v3.24.3 [75] on unmodified read counts.
Gene categories with FDR <0.05 were considered to be signifi-
cantly more abundant in 1 group over the other.

Availability of Source Code and Requirements
� Project name: seq-annot
� Project home page: e.g., https://github.com/Brazelton-Lab/s

eq-annot
� Operating system(s): Linux
� Programming language: Python
� Other requirements: Python 3.4 or higher
� License: GPLv3
� biotoolsID: biotools:seq-annot
� RRID:SCR 018731
� Any restrictions to use by non-academics: none

Availability of Supporting Data and Materials

The raw metagenomic sequence data sets and the metagenome
assemblies supporting the results reported here are available
at the NCBI SRA and NCBI WGS, respectively, under BioProject
accession PRJNA562643. The protocols used in the extraction
of sample DNA can be found at https://baas-becking.biology.u
tah.edu/data/category/18-protocols. The custom software and
scripts used in data processing are available from https://gith
ub.com/Brazelton-Lab. The R code used in data analysis is also
available at the development GitHub page https://github.com/B
razelton-Lab/Thornton 2020. Snapshots of our code and other
data further supporting this work are openly available in the Gi-
gaScience respository, GigaDB [76].

Additional Files

Additional File 1: Supplementary tables and figures.
Supplementary Table S1: Percent total watershed resistome by
drug class.
Supplementary Table S2: ARG-bearing contigs matching known
mobile genetic elements.
Supplementary Table S3: Summary of the antibiotic susceptibil-
ity testing results.
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Supplementary Table S4: Characteristics of the 4 WWTPs asso-
ciated with the study.
Supplementary Table S5: Description of sites sampled within
the Blue River watershed.
Supplementary Table S6: Physical and chemical parameters of
sample site surface waters.
Supplementary Table S7: Sequencing and assembly statistics.
Supplementary Figure S1: Total normalized ARG abundance by
sampling site.
Supplementary Figure S2: Total ARG abundance at varying dis-
tances from WWTP.
Supplementary Figure S3: ARG richness with increasing dis-
tance downstream from a WWTP.
Supplementary Figure S4: Total MGE abundance at varying dis-
tances from WWTP.
Supplementary Figure S5: Association between assembly qual-
ity and quality score threshold at varying sequencing depths.
Additional File 2: Results of the statistical tests using an alter-
native normalization measure.
Figure A.S1: Total normalized ARG abundance by sampling site.
Figure A.1: Total abundance of ARGs in relation to proximity to
WWTP.
Figure A.S1: Total ARG abundance at varying distances from
WWTP.
Figure A.2: Relationship between ARG and crAssphage abun-
dance.
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